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Abstract. Biquadratic coupling between WO order parameters Q, and Q2 can lead to 
transitionsbetweenaphase withonlyoneof thehvoorderparametersactive(phase1orII) 
andamivedphaseIIIinwhich bothorderparametenaresymmetry breaking. Domain walls 
for positive coupling energies are chiral under thermodynamic conditions close to the 
transition points 1-111 and 11-111. Annihilation of chirality in the wall leads to wall widening 
and wall bifurcations. The widths of the walls are different for the hvo order parameters 
leading to greater lattice distortions on either side of the wall than in the centre of the wall, 

1. Introduction 

Many phase transitions relate to more than one thermodynamic degree of freedom, each 
of which leads to symmetry breaking. Typical examples are orientational disorder in 
NaNO, with two critical points in the Brillouin zone Z and F (Schmahl and Salje 1989, 
Harris et a1 1990), cation ordering and lattice distortions in CaAI,Si,O, (Redfern 1990, 
Salje 1987) and competition between two improper ferroelastic phase transitions in 
Pb,(PO,), and related compounds (Bismayer et al 1982, Joffrin er a1 1979, Salje et a1 
1983) and further examples compiled by Salje (1990). In all these cases, a quantitative 
description of the temperature evolution of the order parameter in the uniform state 
was achieved within the general scope of Landau theory using the analysis proposed 
by Salje and Devarajan (1986). The coupling energies are, for symmetry reasons, 
biquadratic, i.e. lQ:Q$.  

It is in the nature of such non-linear coupling phenomena than even energetically 
small contributions of a coupled anharmonicity change the phase transition behaviour 
dramatically. Positive coupling constants, for example, often lead to stepwise transitions 
(trigger efect) even when the uncoupled processes are continuous. The correlated 
question, which has so far not been addressed, is how the local order parameters near 
domain walls react to such coupling phenomena. Here we report that the response of 
the wall structure is to develop chirality in the order parameter space close to the 
transition point even if such chirality does not exist in either phase far from the transition 
point. Effects of chirality in the context of transitions between king walls and Bloch 
waUs for equilibrium systems were reported by Bulaevski and Ginzburg (1964) and 
Lajzerowicz and Niez (1978,1979); non-equilibrium systems were studied by Coullet er 
a1 (1990). Here we argue that chiral walls are also a fingerprint for coupling phenomena 
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between order parametersof different symmetry. For discussion of closely related ‘non- 
topological solitons’ we refer the reader to the excellent papers of Magyari and Thomas 
(1984,1986). 

2. The model 

Following the nomenclature of Salje and Devarajan (1986), we consider the Gibbs free 
energy expression 

G =  tyi(VQi)’ + t ~ 2 ( V Q z ) ’  + MiQ: +@IQ?  + M2Q: + @2Q$ + AQTQ;. 
The coupling constant, A,  is positive and we consider the transition between the phase 
I (Q, # 0, Q, = 0) and phase 111 (bothorderparametersnon-zero); the phase transition 
occurs at the critical point 

A P f o m J  =2AA,/B,. 

We can now calculate the marginal stability of the domain walls in which two order 
parameters are active. The pure phase I become unstable with respect to the paraphase 
Q, = Qz = OatA2 = 0.Theintervalinwhichbothorderparametersarelocallypermitted 
is, thus limited by 2AAl/B, <A, < 0. The Euler-Lagrangian equation in the friction 
limit of the wall is 

d Q i / d f = - A i Q i  -B iQ?  + YrV2Qi-2AQiQ: 
dQ,/dI=-A,Q2 -BzQ$ + yzV2Q2 -2AQjQ2. 

In the stability field of phase 1, we can solve this equation with 
Q, = (*A,/B,) Itanh(-Al/2yl)L!2x = Q\”) 

Q z = o  
where x is the coordinate perpendicular to the wall. Approaching the critical pint, the 
wall profile will be modified by a variation E q  

QI = €?lo’ + E 4 1  Q2 = E q a ,  

The relevant parameter Q2 then follows from 
dq2/dr = (-A2 + 2AAl/B, tanh’ crz)q2 + y 2 V 2 q 2 .  

Thisequation is formally identical to a Schrodinger equation with the relevant eigenvalue 
of (Landau and Lifshitz 1980) 

E =  -A2 +2AA,/Bl +AIy2/(8y1)[l - (1 + 16Ay,/Bly2)”Z] 

For small values of the coupling constant, we can develop all terms in A y  ,/BI y2 and find 
for the marginal stability E = 0 ( E  < 0 for king walls, E > 0 for chiral walls) a value for 
A2 

(~7/8*/2)(-1 + VI+ 16A~u’Bi~d~Ai  Aid,)  = APIOm) - 

where AProrm’ is again the value at the phase transition 1-111 in the uniform case. 
A typical set of parameters used for the following analytical work is A I  = -1, A = 

0.1. The model parameter isA2 which isvaried between -2and 0.2; the uniform phase 
transition occurs at A, = -0.239. All other parameters are set to unity. 
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FigureZ.Trajectories of the kink wall profilesfor 
different valuesof the temperature-related model 
parameter A,. ( A ,  changes from 0.2 (horizontal 
line)to -0.4instepsofO.l,thenfrom-0.6to -2 
(steepest curve) in steps of 0.2). 
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3. Wall profiles and trajectories 

Three types of walls exist in the phase 111 with trajectories between the fourstable points 
in the order-parameter space (QI, Qz), (-el. - Q Z ~  ( -e , ,  Q2) and ( a t ,  -Qd We 
first discuss the wall profile between (Q,, QJ  and ( - e l ,  -e2) .  In figure 1 the wall 
profiles for both order parameters are shown. As the wall thickness dependson both the 
uniform term and the gradient energy, it is clear that these two components of the wall 
have different thicknesses. These differences between the wall thicknesses are clearly 
born out by the trajectories in figure 2, which show a linear correlation only if the two 
wall profiles are proportional toeach other. Adownward bendofthe trajectory indicates 
that the wall in Q, is larger than in Q, and vice versa for an upward bend. Phase I is 
characterized by the horizontal line Q2 = 0. 

We can now relate this non-linear trajectory to the chirality of the wall. First we 
define the chirality via the gradient of the angle between the two order parameters in 
order-parameter space. The gradient is taken in the direction perpendicular to the wall. 
A measure for this gradient is the Lifshitz term 

x = QI dQ2Idx - Q2 dQ,/dx 
which is zero for non-chiral walls. Kinks with two different wall thicknesses in Ql and 
Q, have a non-zero Lifshitz term and are chiral. As the kinks have a common inversion 
centre in the middle of the wall, the chirality changes sign on one side of the wall 



5166 B Houchmandzadeh et a1 

(6 )  
Figure 3. Sketch of bi-chiral and single-chiral walls. The two order parameters Q, and Q2 
are plotted as orthogonal vectors on the left-hand side. The bi-chiral wall ( U )  is the vector 
sum Q, + Q2 of two primary kinksin Q, and Q2 with two different wall thicknesses w I  # w2. 
The single-chiral wall (b)  is the sum o i a  kink wall (Q,) and a breather (e2). The resulting 
wall profilesare shown as thickcurves. 

compared with its sign on the other. The total chirality is zero and we call these walls ‘bi- 
chiral’ (or ‘dipolar chirality’). The opposite case is when the sign of chirality does not 
change in the wall (i.e. ‘single chirality’). This case is  discussed below. This situation is 
illustrated by thesketch of the two wall profilesin figure 3(a).  Here the order parameters 
are shown in the ‘order parameter vector space’ together with their spatial evolution 
with distance from the bulk solution on the left and right end of the drawing. Both 
profiles follow a tanh behaviour with different effective wall thicknesses. The vector 
sum of the two order parameters is shown as a thick line representing the true wall 
profile. This wall is ‘bi-chiral’. 

The difference between the wall thicknesses of the two components of the wall can 
be relevant for the understanding of effects like decoration and early stages of exsolution 
in twinned crystals. The exsolved species will enrich at the position of lowest chemical 
potential, which is related to the square of theorder parameters. Under suitable coupling 
conditions with the local strain, one can find the maximum lattice distortion to be related 
to Q: - QZ. In order to visualize the effect, we normalize eachorder parameter to unity 
in the uniform state and plot the difference function of the squared order parameters in 
figure 4. This function is double-peaked with a maximum at either side of the wall and 
a local minimum in the middle of the wall. Decoration, such as Sr or U in ternary 
feldspars (e.g. Smith 1974) may now occur on these maxima of the lattice distortion. It 
is interesting to note that this fine structure of the wall profile depends sensitively on the 
thermodynamic conditions under which the wall is produced and it might well be that 
such decoration effects can be used for geological fingerprinting. 

We now discuss the case of single chirality for walls between the states (Q,, Q2) and ( -a , ,  Qz).  The repulsive coupling (A > 0) in the model leads to competition between 
the two order parameters so that one order parameter reduced the other. As one order 
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Figure 4. Profile of the function Q: - Q: for A2 = -2. We may expect that decoration of 
walls follows this double-peaked profile with enrichment of defects at the two maxima but 
not in the middle of the wall. 
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Figure 5. Chiral wall with the two components 
Q, (kink, odd symmetry) and Q, (breather, even 
symmetry) (A, = 0.6). 

parameter vanishes in the wall, the other will increase. The vanishing order parameter 
must have odd symmetry with respect to the mirror symmetry of the wall, whereas the 
order parameter bond to the wall must have even symmetry. It isclear that this situation 
leads to chirality. In figure 5 the wall profiles are shown for the numerical calculations. 
The order parameter Ql follows the kink behaviour (odd symmetry); the order par- 
ameter Q, shows a breather profile (even symmetry). The width of the kink is smaller 
than the width of the breather because the gradient energy smoothes the breather more 
effectively than the kink. When the temperature related parameter A ,  is reduced so that 
Q, disappears in the uniform case, we still find non-zero values of Q, in the breather 
(figure 6) .  The trajectories are shown in figure 7. In order-parameter space, the wall is 
now fully chiral because the order parameter Q2disappears outside the breather (figure 
3(b)) .  The wall is characterized by a rotation of the order parameter from +Ql  in the 
uniform matrix through Q2 in the wall to -Q1 in the uniform matrix on the other side of 
the wall. The sense of the chirality does not change in the wall. 
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Figure 6. Wall profilcs within the marginal stab- 
ility of phase 111 (A2 = -0.2). The bulk material 
on either side IS in phase I (Q2 = 0, Q, # 0). The 
wali is the combination of a kink (p,) and a 
breather (Q,) and issingle chiral. 

Figure 7. Trajectories of wall profiles of the type 
shown in figure 5 and 6.711~ walls are pure kinks 
(horizontal line) in phase I under conditions far 
from the transition point. Strong chirality dev- 
elops in phase I close to the transition point (half 
moon. touching the horizontal line). Weak chi- 
rality appears in phase 111 with slightly bent tra- 
jectories shifted to positive values of Q:. 

Figure 8. Wall profile close to a line of com- 
pensated chirality. 

A similar behaviour was found by Coullet eta1 (1990) for the transition between an 
king wall and a Bloch wall. Quantitative differences arrive in our model because we find 
in general that the wall thicknesses of the two components are different so that Q2 
increases well outside the wall thickness of Q,. 

Stressing the generality of our findings leaves us with the difficulty of their direct 
experimental observation. Inspection of images of ferroelastic materials with two com- 
peting order parameters as obtained from transmission electron microscopy seem to 
show singularities in walls which could relate to chirality. The optimal image conditions 
are, however,difficult to maintain and theobservation may be hampered by theinfluence 
of defects and wall interactions. 

4. Annihilation of chirality and wall bifurcations 

Let us now consider a kink in Q, which has single chirality. There are two possibilities 
for the sense of the chirality depending on the sign of Q2 in the wall. The two solutions 
are degenerate because the Euler-Lagrangian equation for Qh") = 0 is invariant with 
respect to the sign of q2. We can now envisage two parts of the same wall with respect 
to Q, but opposite chirality (e.g. 'right' for Q2 > 0 and 'left' for Q2 < 0). The two 
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chiralities cancel at the junction where the two parts of the wall meet. This junction 
forms a line in the wall with Q2 = 0 and Q, = 0. The structural elements on this line are 
those of the paraphase, where both order parameters vanish. Moving away from the 
line, the symmetry of both Q and Q2 is odd so that wall junctions and wall crossings are 
symmetry allowed on the line. 

The width, w , ,  of the wall in Q, is determined by the gradient energy and the linear 
term in the Euler-Lagrangian equation of Q, 

and depends explicitly on the value of Q2 in the wall. A wall forms only for positive 
values of the denominator, i.e. for negative values of A , .  With h > 0, the role of Q2 is 
to reduce the wall thickness. This reduction of the wall thickness is cancelled at the l i e  
of vanishing chirality where Q2 = 0. As a consequence, the wall width increases locally 
and the wall bulgesout to both sides (figure 8).  The diameter of the bulge is (y,/-A,)@. 
which is the same as would occur without order-parameter coupling. In situations where 
the stability field of the phase I is small (i.e. A = 0), the wall thickness diverges locally. 
A second wall is then established perpendicular to the first. This second wall is again 
chiral and the same local compensation of chirality and wall divergence occurs in this 
wall. We expect in this case a network of wall to form that is not unlike that of tweed 
textures of orthogonal walls. 

In conclusion, we wish to point out that the role of the anihilation line (i.e. the tine 
of vanishing chirality) in increasing the local wall thickness can be understood as a pre- 
wetting phenomenon. It increases the dimension of the line d = 1 to d = 2 on the wall 
in the same way as the uniform increase of the wall thickness (d  = 2)  is the precursor of 
the phase transition that takes place in the 3D bulk. 

2 I12 
W I  = [YI/(-AI - 2hQz)l 
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